(1) Physical Electronics, Electron Devices and ICs:

Electrons and holes in semi-conductors, Carner Statistics, Mechanism of current flow in a semi-conductor, Hall effect; Junction theory; Different types of diodes and their characteristics; Bipolar Junction transistor; Field effect transistors; Power switching devices like SCRs, GTOs, power MOSFETs; Basics of ICs-bipolar, MOS and CMOS types; basic and Opto Electronics.

(2) Signals and Systems:

Classification of signals and systems; System modeling in terms of differential and difference equations; State variable representation; Fourier series; Fourier transforms and their application to system analysis; Laplace transforms and their application to system analysis; Convolution and superposition integrals and their applications; Z-transforms and their applications to the analysis and characterization of discrete time systems; Random signals and probability; Correlation functions; Spectral density; Response of linear system to random inputs.

(3) Network Theory:

Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports. Network functions: parts of network functions, obtaining a network function from a given part. Transmission criteria: delay and rise time, Elmore's and other definitions effect of cascading. Elements of network synthesis.

(4) Electromagnetic Theory:

Analysis of electrostatic and magneto-static fields; Laplace's and Poisson's equations; Boundary value problems and their solutions; Maxwell's equations; application to wave propagation in bounded and unbounded media; Transmission lines: basic theory, standing waves, matching applications, microstrip lines; Basics of wave guides and resonators; Elements of antenna theory.

(5) Analog Electronic Circuits:

Transistor biasing and stabilization. Small signal analysis. Power amplifiers. Frequency. response. Wide banding techniques. Feedback amplifiers. Tuned amplifiers. Oscillators, Rectifiers and power supplies. Op Amp, PLL, other linear integrated circuits and applications. Pulse shaping circuits and waveform generators.

(6) Digital Electronic Circuits:

Transistor as a switching element; Boolean algebra, simplification of Boolean function Karnaugh map and applications; IC Logic gates and their characteristics; IC logic families: DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison; Combinational logic circuits; Half adder, Full adder; Digital comparator; Multiplexer De-multiplexer; ROM and their applications. Flip-flops. R-S, J-K, D and T flip-tops; Different types of counters and registers. Waveform generators. A/D and D/A converters. Semi-conductor memories.

(7) Control Systems:

Transient and steady state response of control systems; Effect of feedback on stability and sensitivity; Root locus techniques; Frequency response analysis. Concepts of gain and phase margins; Constant-M and Constant-N Nichol's Chart; Approximation of transient response from Constant-N Nichol's Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems; Compensators; Industrial controllers.

(8) Communication Systems:

Basic information theory; Modulation and detection in analogue and digital systems; Sampling and data reconstructions; Quantization and coding; Time division and frequency division multiplexing; Equalization; Optical Communication: in free space and fiber optic; Propagation of signals at HF, VHF, UHF and microwave frequency; Satellite Communication.

(9) Microwave Engineering:

Microwave Tubes and solid state devices, Microwave generation and amplifiers, Wave guides and other Microwave Components and Circuits, Microstrip circuits, Microwave Antennas, Microwave Measurements, Masers, Lasers; Micro-wave propagation. Microwave Communication Systems-terrestrial and satellite based.

(10) Computer Engineering:

Number Systems. Data representation; Programming; Elements of a high level programming language PASCAL/C; Use of basic data structures; Fundamentals of computer architecture; Processor design; Control unit design; Memory organization, I/o System Organization. Microprocessors: Architecture and instruction set of Microprocessor's 8085 and 8086, Assembly language Programming. Microprocessor Based system design: typical examples. Personal computers and their typical uses.

Electrons and holes in semi-conductors, Carner Statistics, Mechanism of current flow in a semi-conductor, Hall effect; Junction theory; Different types of diodes and their characteristics; Bipolar Junction transistor; Field effect transistors; Power switching devices like SCRs, GTOs, power MOSFETs; Basics of ICs-bipolar, MOS and CMOS types; basic and Opto Electronics.

(2) Signals and Systems:

Classification of signals and systems; System modeling in terms of differential and difference equations; State variable representation; Fourier series; Fourier transforms and their application to system analysis; Laplace transforms and their application to system analysis; Convolution and superposition integrals and their applications; Z-transforms and their applications to the analysis and characterization of discrete time systems; Random signals and probability; Correlation functions; Spectral density; Response of linear system to random inputs.

(3) Network Theory:

Network analysis techniques; Network theorems, transient response, steady state sinusoidal response; Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z, Y, h and transmission parameters. Combination of two ports, analysis of common two ports. Network functions: parts of network functions, obtaining a network function from a given part. Transmission criteria: delay and rise time, Elmore's and other definitions effect of cascading. Elements of network synthesis.

(4) Electromagnetic Theory:

Analysis of electrostatic and magneto-static fields; Laplace's and Poisson's equations; Boundary value problems and their solutions; Maxwell's equations; application to wave propagation in bounded and unbounded media; Transmission lines: basic theory, standing waves, matching applications, microstrip lines; Basics of wave guides and resonators; Elements of antenna theory.

(5) Analog Electronic Circuits:

Transistor biasing and stabilization. Small signal analysis. Power amplifiers. Frequency. response. Wide banding techniques. Feedback amplifiers. Tuned amplifiers. Oscillators, Rectifiers and power supplies. Op Amp, PLL, other linear integrated circuits and applications. Pulse shaping circuits and waveform generators.

(6) Digital Electronic Circuits:

Transistor as a switching element; Boolean algebra, simplification of Boolean function Karnaugh map and applications; IC Logic gates and their characteristics; IC logic families: DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison; Combinational logic circuits; Half adder, Full adder; Digital comparator; Multiplexer De-multiplexer; ROM and their applications. Flip-flops. R-S, J-K, D and T flip-tops; Different types of counters and registers. Waveform generators. A/D and D/A converters. Semi-conductor memories.

(7) Control Systems:

Transient and steady state response of control systems; Effect of feedback on stability and sensitivity; Root locus techniques; Frequency response analysis. Concepts of gain and phase margins; Constant-M and Constant-N Nichol's Chart; Approximation of transient response from Constant-N Nichol's Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems; Compensators; Industrial controllers.

(8) Communication Systems:

Basic information theory; Modulation and detection in analogue and digital systems; Sampling and data reconstructions; Quantization and coding; Time division and frequency division multiplexing; Equalization; Optical Communication: in free space and fiber optic; Propagation of signals at HF, VHF, UHF and microwave frequency; Satellite Communication.

(9) Microwave Engineering:

Microwave Tubes and solid state devices, Microwave generation and amplifiers, Wave guides and other Microwave Components and Circuits, Microstrip circuits, Microwave Antennas, Microwave Measurements, Masers, Lasers; Micro-wave propagation. Microwave Communication Systems-terrestrial and satellite based.

(10) Computer Engineering:

Number Systems. Data representation; Programming; Elements of a high level programming language PASCAL/C; Use of basic data structures; Fundamentals of computer architecture; Processor design; Control unit design; Memory organization, I/o System Organization. Microprocessors: Architecture and instruction set of Microprocessor's 8085 and 8086, Assembly language Programming. Microprocessor Based system design: typical examples. Personal computers and their typical uses.

## 25 comments:

please help me to find the electrical syllabus

does the syllabus same for electricals?

PLS GIVE ME THE ELECTRICAL SYLLABUS

Thank you sir...:)

Hello sir/madam

PLEASE HELP ME OUT TO FIND THE ELECTRICAL SYLLABUS.. Is the syllabus same for both ELECTRICAL and ELECTRONICS..? Please let us know it..

WE want Electrical Syllabus sir

PLEASE TELL THE ELECTRICAL SYLLABUS.

Hi any one got mail for written exam roll number. Plz let know. Or any information abt selected candidate list for written. Plz answer

can u plz give me the previous yera;s solved question paper's for civil engineering

plz answer

Can you please give me electrical syllabus for the exam of isro electrical. Please send to my mail sir and my mail I'd is bhaskarlahari01@gmail.com

Have u got answer for this sir. If u then please send this information to me also and my mail I'd is bhaskarlahari01@gmail.com

IS THIS IS THE SYLLABUS OF 2013 EXAM OR PREVIOUS YEAR,,,I AM GETTING THIS DAUBT AS PREVIOUS YEAR THEY HAVE ASK MATH QUE BUT IN THIS SYLLABUS MATH IS NOT MENTIONED..

Sir, can you please provide me previous yr solved papers of Electronics? My email id is swagta15oct@gmail.com

Thanking you in anticipation & waiting for your reply.

need electrical syllabus

please mail me prvious year solved paper for electronics

my email id-psaha089@gmail.com

please mail me previous year solved question paper of isro for electronics and communication engineering. my email id is tyagivandana93@gmail.com.

please send electrical engineer 2013 exam syllabus and previous year question paper .my e-mail id is cjubin86@gmail.com

Does any1 know the key for electronics paper,, if so give me the link

If any1 got the key for electronics key mail it to s.naveen0490@gmail.com

I have taken electronics and telecommunications,can i apply for the exam in the future?

Can M.Sc Electronic n Telecommunication students can apply for this post??

plz provide authors of reference books

Is the above syllabus applicable now also or the syllabus is revised...pls respond...

## Please post your thoughts and queries for Electronics Syllabus for ISRO Scientist Exam